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Abstract

Ž .The available capacity computation model based on the artificial neural network ANN for lead–acid batteries in an electric vehicle
Ž .EV is presented. Comparing with the methods based on the Peukert equation, which is often used for the calculation of the available
capacity for lead–acid batteries in EVs, this model is more accurate. The results of the experiment have proven the accuracy of the
proposed model; the computation values are in good agreement with experimental data, the associated error has been considered
acceptable from an engineering point of view. q 2000 Elsevier Science S.A. All rights reserved.
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1. Introduction

In response to the growing concern about energy con-
servation and environmental protection, the rekindling of

Ž .interest in electronic vehicles EVs has been obvious. Due
to its mature technology, lower cost and modest perfor-
mance, lead–acid batteries are still widely used in the most
commercially available EVs. Moreover, the present great
improvement in lead–acid batteries has shown that, in the
foreseeable future, it is almost impossible for other ad-
vanced batteries to replace lead–acid batteries completely
in EVs.

However, the calculation of the available capacity of
lead–acid batteries is always a tough task. Many empirical
expressions have been presented, but only the Peukert

w xequation 1 , which describes the relationship between the
Ž . Ž .available capacity C and discharge current I , hasa d

found wide acceptance. It is expressed as:

C sKrI Žny1. 1Ž .a d

where the constants n and K depend on the temperature,
the concentration of the electrolyte, and the structure of
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lead–acid batteries. Originally the Peukert constants were
obtained only using two reference points, which are usu-
ally the maximum and minimum, within the whole range

Ž .of discharge currents Method-I . Later, multilevel Peukert
Ž .equation Method-II was presented by using three refer-

w xence points to obtain two sets of Peukert constants 2 , and
Ž .still the least-square method Method-III was proposed to

estimate the Peukert constants using several reference
w xpoints 3 . These two methods improve the accuracy of

Peukert equation to some extent. In this paper, the avail-
able capacity computation model based on the artificial

Ž .neural network ANN, Method-IV for lead–acid batteries
in EVs is presented. The results of experiments have
proven the further improvement of accuracy with the
proposed model. The computation values are in good
agreement with experimental data.

2. Available capacity computation model based on the
ANN

With the comparison of the above-mentioned methods
based on Peukert equation, here only the discharge current
Ž .I need be considered in the available capacity computa-d

tion model based on the ANN. So the simple configuration
of the ANN model is presented and shown in Fig. 1.
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Fig. 1. Available capacity computation model based on the ANN.

In this configuration, the ANN has three layers, i.e.,
input, hidden, and output layers. The input layer has one

Ž .node for the discharge current I , the hidden layer hasd
Žfour nodes this number was determined from studying the

behavior of the available capacity computation model based
on the ANN during the training process taking into consid-
eration some factors such as convergence rate, mapping

.accuracy, etc. , and the output layer has one node for the
Ž .available capacity C . Again, the input of the node in thea

input layer is directly passed as the output, while each
node in the hidden layer has the same activation function
represented by the following expression:

f x s2r 1qexp y2 x y1 2Ž . Ž . Ž .Ž .

Ž . Ž .and its own bias denoted by b i is1,2,3,4 , and theh

node in the output layer has its own bias denoted by bo

and its activation function expressed as follows:

g x sx 3Ž . Ž .

There are connection weights between each pair of
layers. The weights between the input layer and hidden

Ž .layer are represented by W is1; js1,2,3,4 while thei j

weights between the hidden layer and output layer are
Ž . Ž .represented by V is1,2,3,4; js1 . The f x , the hy-i j
Ž .perbolic tangent tanh , is a continuously differentiable

nonlinear activation function, which is commonly used in
the ANN. It is symmetric with respect to the origin and the

w xamplitude of its output lies inside the range of y1,1 . The
Ž .linear function g x is used to make the output be able to

take the any value over the real numbers. This structure of
Ž .the ANN can map the discharge current I to the avail-d

Ž .able capacity C arbitrarily well if the sufficient nodes ina
w xthe hidden layer are given 4 .

To train this model, a learning process will be carried
out, which is achieved by adapting the connection weights
in response to a number of training pairs of discharge

Ž . Ž .current I and available capacity C . The aim is tod a

arrive at a unique set of weights that are capable of
correctly associating all the discharge currents with their
desired available capacities. The back-propagation ANN

model for this research was developed using the ANN
Ž .toolbox in the Matrix Laboratory MATLAB .

3. Experiment results and comparison

The selection of training pairs is essential to make the
ANN achieve better performance. For the training of the
proposed ANN model, discharge currents should cover the

Žwide range of currents e.g., from 0.2 C to 1.0 C , here5 5

C refers to the rated capacity of battery on a 5-h discharge5
.rate which are typically discharged in EVs. Fig. 2 shows

the relationship between the available capacity and the
discharge current of the CS-E105A traction battery in-
stalled in the tested EV.

From this figure, two sets of data are obtained, which
are shown in Tables 1 and 2, respectively. Data-I will be
used in training while Data-II will be used in verifying.

Using Data-I in Table 1 as training set, the weights
between neighboring two layers and corresponding biases
are determined. The results are shown as follows.

The weights between the input layer and the hidden
layer are W s0.0114, W s0.3216, W s1.6628, W11 12 13 14

Ž .s1.1714; The biases in hidden layer are b 1 s0.2392,h
Ž . Ž . Ž .b 2 s10.1633, b 3 sy49.3865, b 4 s16.7807; Theh h h

weights between the hidden layer and the output layer are
V sy69.2601, V s22.0759, V sy2.6964, V s11 12 13 14

26.6636; The bias in output layer is b s86.7334.o

For verifying the accuracy of the proposed ANN model,
the discharge current of Data-II is used to estimate the
available capacity with the trained ANN model. Moreover,
these estimation values are compared with the measured
available capacities. The results are shown in Table 3 and
Fig. 3, respectively.

It can be seen that almost consistent accuracy level is
kept within less than 1% except only one point.

For the comparison study, Method-I, Method-II and
Method-III have been obtained for Data-I in Table 1.
Through the analysis, the following three models which

Fig. 2. Relationship between available capacity and discharge current.
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Table 1
Ž .Data set Data-I for training available capacity computation model based

on ANN

Ž .I A 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 110.0d
Ž .C A h 108.0 98.0 91.0 87.0 82.0 79.0 76.0 74.0 72.0 70.0a

Table 2
Ž .Data set Data-II for verifying available capacity computation model

based on ANN

Ž .I A 25.0 35.0 45.0 55.0 65.0 75.0 85.0 95.0 105.0 110.0d
Ž .C A h 102.0 94.0 89.0 85.0 80.0 77.0 75.0 73.0 71.0 70.0a

are corresponding to the above three methods are derived
for the estimation of the available capacity:
Method-I:

C sK rI Žn1y1.
a1 1 d

0.2544 w xs231.4015rI I : 20,110 4Ž .d d

Method-II:

C sK rI Žn2y1.
a21 21 d

0.2507 w xs228.8653rI I : 20,60 5Ž .d d

C sK rI Žn3y1.
a22 22 d

0.261 w xs238.7688rI I : 60,110 6Ž .d d

Method-III:

C sK rI Žn4y1.
a3 3 d

0.25159 w xs229.63016rI I : 20,110 7Ž .d d

Fig. 3. Comparison with measured C and estimated C .a a4

By using the ANN model and the three methods above,
the available capacities have been estimated by the dis-
charge currents whose range is from 20 to 110 A. The
results are shown in Table 4. When utilizing the ANN
model, the error level is low compared with those obtained
by using the methods based on the Peukert equation.

In order to compare with the methods based on Peukert
equation, the current available capacity computation model
based on ANN does not take the influence of battery
temperature and battery history into account. In consider-

Žing the battery temperature, the new input battery temper-
.ature will be introduced in the input layer of the ANN

based model, whereas in considering the battery history the
adaptive ANN based model will be presented. These two
factors of influence on the available capacity computation
model based on the ANN will be discussed in detail in
another paper.

Table 3
Estimation accuracy of available capacity computation model based on ANN

1 < < 2 < <Note: Error s Measured C yEstimated C ; Error s Measured C yEstimated C rMeasured C .a a4 a a4 a

I 25.0 35.0 45.0 55.0 65.0 75.0 85.0 95.0 105.0 110.0d

Measured C 102.0 94.0 89.0 85.0 80.0 77.0 75.0 73.0 71.0 70.0a

Estimated C 104.88 93.77 88.73 84.37 80.65 77.52 74.90 72.73 70.96 70.20a4
1 Ž .Error A h 2.88 0.23 0.27 0.63 0.65 0.52 0.10 0.27 0.04 0.20
2 Ž .Error % 2.76 0.24 0.30 0.74 0.81 0.67 0.13 0.37 0.06 0.28

Table 4
Comparison of measured available capacity and estimated available capacity based on Peukert equation and ANN model

Ž . Ž . Ž . Ž . Ž .I Measured C Method-I 4 Method-II 5 , 6 Method-III 7 Method-IV ANNd a

Ž . Ž . Ž . Ž .C Error % C Error % C Error % C Error %a1 a2 a3 a4

20.0 108.0 108.0 0.0 108.0 0.0 108.1 0.056 108.0 0.0
30.0 98.0 97.4 0.612 97.6 0.408 97.6 0.612 98.0 0.0
40.0 91.0 90.5 0.549 90.8 0.220 90.8 0.220 91.2 0.220
50.0 87.0 85.5 1.724 85.8 1.379 85.8 1.379 86.5 0.575
60.0 82.0 81.7 0.366 82.0 0.0 82.0 0.0 82.4 0.488
70.0 79.0 78.5 0.633 78.8 0.253 78.9 0.127 79.0 0.0
80.0 76.0 75.9 0.131 76.1 0.132 76.2 0.263 76.1 0.132
90.0 74.0 73.7 0.405 73.8 0.270 74.0 0.0 73.8 0.270

100.0 72.0 71.7 0.417 71.8 0.278 72.0 0.0 71.8 0.278
110.0 70.0 70.0 0.0 70.0 0.0 70.4 0.571 70.2 0.286
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4. Conclusion

The accurate estimation of the available capacity of
battery is very important for EVs when EVs are on the
road. An available capacity computation model based on

Ž .the artificial neural network ANN has been proposed.
The accuracy of this method has been verified by using the
measured data. Comparing with the methods based on
Peukert equation, the method based on the ANN gives the
highly accurate estimation of the available capacity.
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